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Abstract—We propose a bias-eliminated weighted (Bias-Eli-W)
perspective-n-point (PnP) estimator for stereo visual odometry
(VO). This estimator leverages statistical theory to handle varying
3D triangulation uncertainties, ensuring consistent relative pose
estimates. Our stereo VO framework uses only triangulated
points from the current keyframe, decoupling temporal depen-
dencies between pose and 3D point errors. We integrate the
Bias-Eli-W PnP estimator into the proposed stereo VO pipeline,
creating a synergistic effect that enhances the suppression of
pose estimation errors. Experiments show significant odometry
performance improvement in large-scale environments.

I. INTRODUCTION

Most VO methods are based on SLAM frameworks, jointly
optimizing camera poses and 3D map points [1, 2, 3]. These
methods often lack accurate uncertainty estimation for point
correspondences and fail to incorporate estimator optimization
with theoretical guarantees. The primary challenge of precise
uncertainty estimation in a SLAM framework lies in the
temporal coupling between pose and 3D point errors.

This paper introduces a pure odometry framework, Current-
Feature Odometry, which focuses on relative pose estimation
without 3D point optimization. It leverages only triangulated
feature points from the current keyframe for PnP-based track-
ing, breaking the temporal coupling between pose and 3D
point errors. Building on this decoupling, we accurately model
point uncertainties and optimize the estimator from a statistical
perspective, resulting in a consistent PnP pose estimator that
converges to the true value as the point number increases.
CurrentFeature Odometry not only achieves significantly lower
relative pose error (RPE) but also surpasses SOTA SLAM
algorithms in terms of absolute trajectory error (ATE).

II. CURRENTFEATURE OODMETRY

The system overview is illustrated in Figure 1.
1) Front end: We use pyramidal Lucas-Kanade optical

flow to track features and establish 2D-2D matches between
consecutive frames. To enhance robustness, a two-stage geo-
metric verification is applied: (1) the five-point algorithm with
RANSAC filters initial outliers via essential matrix estimation,
and (2) an ℓ1-norm PnP refines the pose estimate and dis-
cards the 10% of points with the largest reprojection errors.
Keyframe (KF) insertion is determined based on the number of
successfully tracked features and average feature displacement.
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Figure 1: System overview. L and R refer to the left and right
images, respectively, and KF and CF denote the keyframe and
current frame, respectively.

2) Back end: As illustrated in Figure 2, after feature
tracking and outlier rejection, we obtain point correspondences
among the KF and the left image of the current frame (CF),
denoted as {xi, yi, zi}ni=1. According to Theorem 1 in [4],
a consistent estimator σ̂2 for 2D feature noise variance is
derived by solving an eigenvalue problem, converging to the
true variance as the feature number increases.

For triangulation, we use a linear least-squares closed-form
solution instead of parallax-based methods [1, 2] or singular-
value-decomposition approaches [5], as it is more general and
better suited for uncertainty analysis. Specifically, the solution
is pi = (A⊤

i Ai)
−1A⊤

i bi, where Ai and bi depend on xi, yi,
and the stereo baseline. The uncertainty of the 3D point pi is
estimated as Σi = Jpi

ΣJ⊤
pi

, where Σ = σ̂2I4 and Jpi
is the

Jacobian matrix of pi with respect to 2D feature noise.
Building on triangulation, we propose a bias-eliminated

weighted (Bias-Eli-W) PnP algorithm to estimate the pose of
the CF relative to the KF, denoted as (Rc, tc). By referring
to (12) in [6], a least-squares estimate for the pose can be
obtained as θ̂B = (H⊤H)−1H⊤d, where H and d are derived
from 2D points zi and 3D points pi. However, since the regres-
sor matrix H is correlated with noise, θ̂B is inconsistent [7].
To address this, we design the bias-eliminated solution

θ̂BE =

(
H⊤H

n
−G

)−1
H⊤d

n
,

where G depends on zi and 3D uncertainties Σi. The estimator
(R̂BE

c , t̂BE
c ) for rotation and translation can be recovered from

θ̂BE; see (14)-(17) in [6].

Theorem 1. The bias-eliminated estimator (R̂BE
c , t̂BE

c ) is
consistent, i.e., it converges to the ground truth as the feature
number increases.



Table I: Comparison of ATE and RPE across different sequences in KITTI dataset. ORB3 denotes ORB-SLAM3 and OV2
represents OV2SLAM. Values highlighted in blue bold represent the smallest, and values in blue denote the second smallest.

Sequence
ATE (m) RPE (m)

Color Grayscale Color Grayscale
ORB3 OV2 Ours ORB3 OV2 Ours ORB3 OV2 Ours ORB3 OV2 Ours

seq00 4.042 4.676 4.174 4.263 4.767 4.514 0.0287 0.0278 0.0262 0.0283 0.0262 0.0260
seq02 9.549 11.406 5.756 7.900 7.363 3.900 0.0286 0.0278 0.0257 0.0277 0.0263 0.0257
seq03 3.846 4.183 0.551 1.200 1.177 1.030 0.0250 0.0264 0.0148 0.0182 0.0166 0.0158
seq04 3.160 3.453 2.328 0.213 1.306 0.726 0.0445 0.0487 0.0353 0.0198 0.0239 0.0197
seq05 3.904 4.254 3.332 2.115 2.448 2.403 0.0264 0.0267 0.0178 0.0166 0.0163 0.0124
seq06 4.279 5.052 2.400 1.791 3.533 1.859 0.0360 0.0363 0.0187 0.0174 0.0183 0.0138
seq07 1.991 2.226 1.593 1.222 1.621 1.281 0.0235 0.0213 0.0175 0.0166 0.0124 0.0123
seq08 6.201 6.315 5.866 3.698 3.590 3.430 0.0439 0.0431 0.0397 0.0389 0.0380 0.0392
seq09 6.598 6.529 5.245 3.193 3.760 2.169 0.0324 0.0327 0.0234 0.0232 0.0249 0.0181
seq10 4.477 4.421 3.088 1.393 0.655 0.638 0.0261 0.0237 0.0196 0.0211 0.0181 0.0172
Ave 4.805 5.252 3.433 2.699 3.022 2.195 0.0315 0.0314 0.0239 0.0228 0.0221 0.0200

Uncertainty 
estimation

Triangulation

Bias-Eli-W
PnP

CF

KF

Figure 2: Illustration of frame tracking. The orange circles
represent feature-matching uncertainties and the blue ellipses
denote the triangulation uncertainties.

We use (R̂BE
c , t̂BE

c ) as the initial value and apply a weighted
PnP iterative refinement. Let h(·) represent the pinhole camera
projection model. The weight for the i-th point is Σ̄− 1

2
i , where

Σ̄i = JhiΣiJ
⊤
hi

, and Jhi is the Jacobian of h(R̂BE
c pi + t̂BE

c )
with respect to pi. Due to the consistency of the initial
estimator (R̂BE

c , t̂BE
c ) and the quadratic convergence of the

Levenberg-Marquardt (LM) algorithm near the global min-
imum, a single LM iteration is sufficient to achieve the
minimum estimation variance when the number of points n
is large [4]. This makes our method computationally efficient.

When a new KF is generated, we perform a local bun-
dle adjustment (BA) that includes the latest two KFs and
intermediate ordinary frames (OFs), as shown in Figure 3.
The parameters to be refined are six-degree relative poses
ξk ∈ R6, k = 1, . . . ,K + 1, where each ξk consists of three
Euler angles and a translation vector. Since feature tracking in
OFs only involves left images, their right images are excluded
from the local BA. Following SOFT2 [8], we use the point-
to-epipolar-line distance as the residual. In [8], only the left
images from frames within the sliding window are involved
in BA optimization. However, this approach, relying solely on
temporal rigidity without a baseline constraint, cannot refine
the scale. In this paper, by incorporating baseline-induced
rigidity (using the right images of keyframes), we achieve
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Figure 3: Illustration of epipolar BA. For two KFs, we utilize
stereo images, while for OFs, we only use the left image.

simultaneous refinement of all six degrees of freedom.

III. EXPERIMENTS

We evaluate the performance of CurrentFeature Odometry
on the KITTI [9] dataset. For comparison, we include ORB-
SLAM3 [1] and OV2SLAM [2], the top two open-source
stereo VO approaches on the KITTI dataset. To ensure a fair
comparison and focus solely on odometry performance, the
loop closure modules in both methods are disabled. The ATE
and RPE comparison results are summarized in Table I. We
see that CurrentFeature Odometry significantly outperforms
ORB-SLAM3 and OV2SLAM. Specifically, compared to the
second-best method, our algorithm achieves a 24% reduction
in average RPE and a 28% reduction in average ATE on color
sequences.

IV. CONCLUSION

We revisited stereo VO and proposed a consistent PnP-
enabled framework, CurrentFeature Odometry. It breaks the
coupling between the pose and 3D point errors. Based on the
decoupling, we accurately modeled the uncertainties of 3D
points and proposed a Bias-Eli-W PnP estimator to achieve
consistent relative pose estimation. Finally, an epipolar BA
is used to refine pose estimation. CurrentFeature Odometry
achieves SOTA performance on the KITTI dataset.
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