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Abstract—This paper outlines the potential of visual place
recognition (VPR), used for loop closure detection, to enhance
camera-based SLAM. It highlights the gap between state-of-
the-art VPR techniques proposed in the literature and those
currently implemented in recent Visual SLAM systems. A
preliminary experiment further demonstrates the potential benefit
of integrating modern VPR methods into future SLAM pipelines.

I. INTRODUCTION

Visual simultaneous localization and mapping (V-SLAM)
is the key for truly autonomous robotic systems equipped
with cameras operating in GNSS-denied or, more broadly,
infrastructure-free environments such as (urban) canyons, caves,
mines, extraterrestrial worlds, or disaster zones. V-SLAM is
an active research field with numerous proposed methods and
systems [, 12} 13| 4]. An essential component of V-SLAM for
building globally consistent maps in large-scale, long-term
applications is visual place recognition (VPR) for loop closure
detection. Like V-SLAM, VPR is an active research area
(5L 16} [7, 8l 9. However, despite the importance of VPR for V-
SLAM, both research fields are quite independent, and recent V-
SLAM systems rarely incorporate the latest advancements from
the VPR literature. As a result, V-SLAM systems potentially
miss the opportunity to achieve higher performance during
large-scale, long-duration operation.

In this paper, I briefly outline the potential of modern
VPR for enhanced V-SLAM. I begin with an overview of the
diversity of VPR techniques, followed by a review of several
recent V-SLAM systems to highlight the gap between existing
and utilized VPR methods. Finally, I present a preliminary
experiment demonstrating that V-SLAM performance improves
when better-performing VPR methods are used.

II. DIVERSITY OF VPR METHODS

There is a rich literature on VPR that proposes diverse
methods across various categories to enhance performance
and robustness. Below, some of the most important categories
are presented to convey an impression of this diversity. A
more detailed description of the following categories and
corresponding techniques can be found in [11] as well as
in the surveys [} 16} [7, [8]. An introduction to the basics of
VPR is provided in [9].

The main challenges for VPR during long-term operation
are viewpoint changes, challenging conditions (e.g., fog, snow),
and changing conditions (e.g., from day to night). To increase
robustness against these challenges, a variety of local and
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Fig. 1: Relation between performances of V-SLAM (ATE: lower
is better) and its VPR component (AUC: higher is better) for all
descriptors without and postprocessing using SeqConv [10]

holistic image descriptors for image comparison have been de-
veloped, including CosPlace [12], D2Net [13]], DELF [14], Den-
seVLAD [15], DinoV2SALAD [16], EigenPlaces [17], HDC-
DELF [18]], HybridNet [19]], MixVPR [20], NetVLAD [21]],
R2D2 [22], and TransVPR [23]. Note that semantic information
can also be integrated into descriptors [24} 25], e.g., to enable
loop detection even when the viewpoint is in the opposite
direction [24]]. Alternatively, image translation methods have
been proposed that convert the images of different conditions
before feature extraction into a single reference condition using
different learning-based techniques [26| 27, 28]. To improve
the performance of any holistic image descriptor for image
comparison, descriptor transformations based on principal
component analysis [27, 29] or standardization [30} 31] have
been applied. Hierarchical VPR combines holistic and local
descriptors by first selecting matching candidates using the
typically faster holistic descriptors, followed by a more accurate
but slower verification using local descriptors [13} [32} |33]].
Literature on the efficient comparison of descriptors focuses
on selecting only a subset of image pairs for sparse descriptor
comparison by leveraging additional knowledge about the
dataset [34] [35]. Instead of computing holistic and local
descriptors independently, descriptor aggregation combines
a set of local descriptors from an image into a single holistic
descriptor using approaches such as bag of visual words (BoW)
[36, 37], vector of locally aggregated descriptors (VLAD)
[15} 38], hyperdimensional computing (HDC) [18} 39]], or deep



Visual SLAM / SfM System Year | VPR System

AirSLAM [51] 2025 | PLNet point features [S1] + DBoW2 [37] + custom geometric consistency check with LightGlue [S2]
Basalt [53]] 2019 | implicitly using ORB [54] and keypoint matching

DPV-SLAM++ [55] 2024 | ORB [54] + DBoW?2 [37] and proximity

DROID-SLAM [56] 2021 | exhaustive computation of reprojection error between every frame combination
Gaussian Splatting SLAM [57] | 2024 | (no loop closure detection)

Kimera [58]] 2020 | ORB [54] + DBoW2 [37] + geometric verification

MASt3R-SLAM [59] 2024 | MASt3R-encoder [60] + ASMK [61]

ORB-SLAM?2 [62] 2017 | ORB [54] + DBoW?2 [37]

ORB-SLAM3 [63] 2021 | ORB [54] + DBoW?2 [37] with custom geometric and temporal consistency check
SuperVINS [64] 2025 | SuperPoint [65] + DBoW3 [66]

VINS-Mono [67] 2018 | Shi-Tomasi Corner Detector [68] + BRIEF [69] + DBoW?2 [37]

COLMAP [70] 2016 | RootSIFT [71] + scalable BoW [72]

GLOMAP [73] 2024 | RootSIFT [71] + scalable BoW [72]

MASt3R-SfM [74] 2024 | MASt3R-encoder [60] + ASMK [61]

TABLE I: Overview of V-SLAM (top) and SfM (bottom) systems with their publication year and used VPR system

learning [32]]. Multi-process fusion can be used to combine
the strengths of multiple descriptors (or potentially other VPR
techniques) [18}, 40, 41l 42]]: For example, some descriptors
may perform better in urban environments, while others may
be more effective in natural environments [43]] or in specific
geographic regions such as Western cities [44]]. For an even
better recognition of known places, especially if the condition
slightly changes between each loop, place-specific descriptors
or classifiers can be used, e.g., based on experiences [45] or
support vector machines [46]. Beyond image descriptors, the
VPR performance can often be significantly improved using the
well-studied sequence-based methods (10} 34, 147, 148 49, 501,
which aim to ensure temporal consistency when images are
captured along a trajectory.

III. VPR METHODS IN V-SLAM SYSTEMS

reviews several recent V-SLAM systems, along
with related structure-from-motion (SfM) systems, including
their publication year and the VPR system employed for loop
closure detection or correspondence search, respectively. For an
overview of six recent LIDAR-centric SLAM systems developed
for operation in challenging environments during the SubT
Challenge [75], please refer to [76].

Despite the diversity of VPR techniques, many state-of-
the-art V-SLAM systems still rely on a limited set of older
methods for loop closure detection. For instance, most systems
in use hand-crafted local descriptors such as ORB,
RootSIFT, or Shi-Tomasi combined with BRIEF, even though
the performance of their feature detectors is known to de-
grade under challenging or changing environmental conditions
[L5L 1777, [78) [79]. Instead, descriptors from the VPR literature
designed to handle severe viewpoint or environmental condition
changes could be leveraged. However, some systems, such as
AirSLAM, MASt3R-SLAM and SuperVINS, do employ deep-
learned descriptors that are more robust to significant viewpoint
and illumination changes. For computational efficiency, most
V-SLAM systems actually adopt a hierarchical approach that
first selects matching candidates using a holistic descriptor and
then performs geometric verification. Typically, these holistic
descriptors are constructed by aggregating local descriptors
using methods such as DBoW2 from 2012 or ASMK from 2013.
For a temporal consistency check, some of the V-SLAM systems

use DBoW'’s integrated sequence method, which compares three
consecutive (key)frames of a loop, although more sophisticated
sequence-based methods exist in the VPR literature.

IV. EXPERIMENTAL EVALUATION

The following preliminary experiment evaluates the potential
of integrating modern VPR methods into a V-SLAM pipeline.

1) Setup: A lightweight pose-graph SLAM is implemented
that combines odometry and loop closure detections using a
factor graph [80] with Gaussian max mixture model [81] for
robust optimization. For pairwise image comparison, one of six
holistic or three local image descriptors is used. The resulting
pairwise image similarities are optionally post-processed using
one sequence-based method as a representative of the broad
field of VPR methods beyond descriptors. For evaluation, five
traversals through suburban streets from the St Lucia dataset
[82]] are used. Synthetic odometry data is extracted from GPS
with 10% noise. All experiments are repeated 20 times.

2) Result: The results in reveal a strong correlation
between SLAM performance and VPR performance. This
suggests that integrating more advanced VPR methods into
future SLAM pipelines could further improve the overall
SLAM performance. However, the result using ground truth
loop closures also highlights the limit of VPR’s impact, as
SLAM accuracy also depends on (visual) odometry [83], the
optimization backend, and the application and trajectory. For
instance, V-SLAM on datasets with few, long loops is potentially
more affected by missed loops than on datasets with frequent
loops.

V. CONCLUSION

In this paper, I briefly outlined the potential of VPR for
V-SLAM. The current gap between VPR techniques in the
literature and those currently implemented in V-SLAM systems
demonstrates that more sophisticated VPR methods could be
integrated into loop closure detection. This could enable future
V-SLAM systems to be more robust to viewpoint changes,
challenging conditions and severe condition changes, which is
particularly important during long-term applications in large-
scale environments. A preliminary experiment demonstrated
the correlation between VPR performance and V-SLAM
performance, suggesting a benefit of using more advanced
VPR techniques.
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