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Abstract—TAT-VPR is a ternary-quantized transformer that
brings dynamic accuracy–efficiency trade-offs to visual SLAM
loop-closure. By fusing ternary weights with a learned
activation-sparsity gate, the model can control computation by up
to 40% at run-time without degrading performance (Recall@1).
The proposed two-stage distillation pipeline preserves descriptor
quality, letting it run on micro-UAV and embedded SLAM stacks
while matching state-of-the-art localization accuracy.

Index Terms—Visual Place Recognition, SLAM, Quantization

I. INTRODUCTION & BACKGROUND

Visual Place Recognition (VPR) is often formulated as an
image-retrieval task, matching a query image to a geotagged
image database. State-of-the-art methods use foundation-scale
Vision Transformer (ViT) global descriptors [1]–[3], which are
robust to viewpoint, lighting, and seasonal changes. However,
their high computational and memory demands limit their use
on low-power mobile robots, especially for real-time SLAM
loop closure [4], [5]. Consequently, many lightweight SLAM
systems still rely on hand-crafted or aggregated point features,
sacrificing the robustness of modern transformers [6], [7].

To mitigate this, the field has turned to neural network com-
pression. Binary and low-bit quantization can push precision
below 8-bit with minimal accuracy loss [4], [8], [9], while
pruning and sparsity reduce redundancy without degrading
performance [5]. In NLP, methods like Q-Sparse [10] and
BitNet-4.8a [11] show that sub-4-bit quantization and activa-
tion sparsity are compatible. Task-aware knowledge distillation
further enhances efficiency by transferring capacity from large
ViT teachers to smaller students [12]. Yet, these approaches
are typically fixed to one accuracy-efficiency tradeoff: once
deployed, they can’t adapt to changing conditions such as low
power or high speeds in cluttered environments.

We propose TAT-VPR, an end-to-end extreme-quantization
pipeline (Figure 1) that combines ternary weight quantization,
adaptive activation gating, and teacher–student distillation.
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Fig. 1. Overview of the TAT-VPR pre-training pipeline. A full-precision
DINOv2-BoQ teacher [3] (purple, frozen) provides token-level supervision to
a ternary student transformer (green). During training, the student applies a
top-k sparse activation filter. A distillation loss is computed between teacher
and student tokens to guide compression-aware representation learning.

The result is a model that can dynamically control infer-
ence cost by sparsifying activations on demand. On standard
VPR benchmarks, TAT-VPR achieves under 1% Recall@1
drop compared to the dense model while dynamically cutting
inference operations by 40% and shrinking model size 5×,
offering a practical, adaptive solution for resource-aware visual
localization.

II. METHOD

Our model leverages a ViT-Base architecture for global
image–descriptor extraction, modified with ternary weights
and controllable sparse activations. The core components are
outlined below.

A. Ternary Quantized ViT Backbone

Every weight tensor is quantized to the ternary set
{−1, 0,+1} with absolute mean quantization:

W̃ = RoundClip
(

W
γ+ε , −1, 1

)
(1)

where γ = 1
MD∥W∥1 is the absolute mean of the tensor

and ε = 10−6 prevents division by zero. RoundClip rounds to
the nearest integer then clips to the interval [−1, 1]. Resulting
in a 8× memory saving compared to 32-bit floating point.

B. Activation-Sparsity Scheduling

To let the model trade accuracy for efficiency at run time, we
apply a top-k activation mask. Given activations X ∈ RN×D,

M = TopK
(
|X|, k

)
, Y = (X⊙M)W̃⊤, (2)



Fig. 2. (A) Recall@1 versus Tera-Operations (TOPs) for a feature-extraction forward pass, showing TAT-VPR curves at activation sparsity levels from 0%
up to 60%. (B) Recall@1 versus memory footprint on the Pitts30k dataset, highlighting memory savings from ternary-weight backbones.

where the binary mask M ∈ {0, 1}N×D keeps the largest-
magnitude k% entries in X and ⊙ denotes the hadamard prod-
uct. Because zeroed elements of X can be skipped by sparse
matrix kernels, only k% of the usual multiply–accumulate op-
erations are executed, yielding proportional savings in latency,
energy, and TOps (Tera Operations).

C. Knowledge Distillation with a BoQ Teacher

Extreme quantization and sparsity inevitably limit repre-
sentational capacity, so we pre-train the student with guided
distillation from a full-precision DINOv2-BoQ teacher [3]. We
use a single token-level mean-squared error loss on the output
tokens:

Ldistill =
1

ND

∥∥S(L) −T(L)
∥∥2
2
, (3)

where T(L),S(L)∈RN×D are the teacher and student tokens
at the final layer L. This objective suffices to recuperate the
accuracy lost to ternarisation and sparsity (2). During this stage
we linearly raise the sparsity sampling range of k from 10% to
60%, forcing the network to concentrate information in sparse
activations whilst avoiding under-training.

D. Fine-tuning

We fine-tune the pre-trained compact backbone on the GSV-
CITIES dataset using a supervised multi-similarity retrieval
loss [13]. Four aggregation heads are evaluated on top of
the frozen sparse ternary backbone: Bag-of-learnable queries,
SALAD, MixVPR, and a lightweight classification token head
[1], [3], [14]. Only the head and the last two backbone
layers are updated to preserve low-precision representations
and prevent overfitting.

III. RESULTS AND DISCUSSION

Figure 2-A shows the Recall@1 versus computational cost
(in TOps) curves for TAT-VPR, where computational cost is
controlled via runtime activation sparsity. Across all aggrega-
tion heads, up to a 40% reduction in TOps can be achieved
with less than a 1% loss in Recall@1 on the Pitts30k dataset.

TABLE I
RECALL@1 / RECALL@1 PER MB ON SVOX CONDITION SPLITS.

Method Snow Rain Overcast Night Sun

TAT-BoQ 97.0 / 1.71 94.2 / 1.66 97.7 / 1.72 61.5 / 1.08 92.7 / 1.63
TAT-MixVPR 90.6 / 2.95 87.5 / 2.85 93.5 / 3.04 35.2 / 1.14 82.2 / 2.67
TAT-CLS 78.7 / 2.63 75.2 / 2.52 89.7 / 3.00 20.0 / 0.67 66.5 / 2.23
TAT-SALAD 95.3 / 2.93 92.5 / 2.84 96.7 / 2.97 41.6 / 1.28 88.1 / 2.71

DINOv2-SALAD 99.4 / 0.30 98.7 / 0.29 98.5 / 0.29 97.8 / 0.29 97.7 / 0.29
DINOv2-BoQ 98.7 / 0.27 98.5 / 0.27 98.3 / 0.27 95.4 / 0.26 97.1 / 0.27
CosPlace 90.3 / 0.85 85.1 / 0.80 91.4 / 0.86 48.6 / 0.46 76.9 / 0.73
EigenPlaces 91.5 / 0.86 88.0 / 0.83 92.5 / 0.87 59.8 / 0.56 85.2 / 0.80

In contrast, baseline models including [1], [3], [15], [16] rely
on a fixed and higher volume of TOps.

Figure 2-B presents the static memory consumption of
TAT models compared to baselines. Despite employing larger
backbones in terms of parameter count, most TAT models
(excluding TAT-BoQ) consume significantly less memory. This
efficiency arises from the use of 2-bit ternary quantized
weights in the TAT models.

Table I demonstrates the robustness of TAT models relative
to baselines under various appearance change conditions. Due
to the distillation of generalizable representations during the
pre-training stage, both TAT-BoQ and TAT-SALAD achieve
higher recall scores than convolutional baselines such as
[15], [16], even when operating at 40% activation sparsity.
Moreover, across all datasets, TAT models achieve markedly
superior memory efficiency despite the 40% activation sparsity
constraint.

IV. CONCLUSION

TAT-VPR brings dynamic scalability to visual SLAM: its
ternary weights and adaptive activation sparsity let a single
network down-shift latency and power on the fly, yet still de-
liver near-state-of-the-art Recall@1 for loop-closure detection.
The 5× memory cut and 40% TOps savings free headroom for
tracking, mapping, and relocalisation threads on micro-UAV
and embedded SLAM stacks.
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